Gate-tuned high frequency response of carbon nanotube Josephson junctions.

نویسندگان

  • J-P Cleuziou
  • W Wernsdorfer
  • S Andergassen
  • S Florens
  • V Bouchiat
  • Th Ondarçuhu
  • M Monthioux
چکیده

Carbon nanotube Josephson junctions in the open quantum dot limit are fabricated using Pd/Al bilayer electrodes, and exhibit gate-controlled superconducting switching currents. Shapiro voltage steps can be observed under radio frequency current excitations, with a damping of the phase dynamics that strongly depends on the gate voltage. These measurements are described by a standard resistively and capacitively shunted junction model showing that the switching currents from the superconducting to the normal state are close to the critical current of the junction. The effective dynamical capacitance of the nanotube junction is found to be strongly gate dependent, suggesting a diffusive contact of the nanotube.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon nanotube Josephson junctions with Nb contacts

We report on the preparation of carbon nanotube Josephson junctions using superconducting electrodes made of niobium. Gate-controllable supercurrents with values of up to 30 nA are induced by the proximity effect. The IV curves are hysteretic at low temperature and the corresponding switching histograms have a width of 0.5%–2%. An on-chip resistive environment integrated in the sample layout is...

متن کامل

Diffusive Josephson junctions made out of multiwalled carbon nanotubes

We have investigated electrical transport in diffusive multiwalled carbon nanotubes (MWNT) contacted using superconducting leads made of Ti/Al/Ti sandwich structure. We measure proximity-induced supercurrents up to Icm = 1.3 nA and find tunability by the gate voltage due to variation of the Thouless energy via the diffusion constant that is controlled by scattering in the MWNT. The modeling of ...

متن کامل

Band bending engineering in p-i-n gate all around Carbon nanotube field effect transistors by multi-segment gate

The p-i-n carbon nanotube (CNT) devices suffer from low ON/OFF current ratio and small saturation current. In this paper by band bending engineering, we improved the device performance of p-i-n CNT field effect transistors (CNTFET). A triple gate all around structure is proposed to manage the carrier transport along the channel. We called this structure multi-segment gate (MSG) CNTFET. Band to ...

متن کامل

Band bending engineering in p-i-n gate all around Carbon nanotube field effect transistors by multi-segment gate

The p-i-n carbon nanotube (CNT) devices suffer from low ON/OFF current ratio and small saturation current. In this paper by band bending engineering, we improved the device performance of p-i-n CNT field effect transistors (CNTFET). A triple gate all around structure is proposed to manage the carrier transport along the channel. We called this structure multi-segment gate (MSG) CNTFET. Band to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 99 11  شماره 

صفحات  -

تاریخ انتشار 2007